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reduction of Ru(bpy)3
2+, will be discussed in detail in a later 

publication. 
In acetonitrile a rapid reaction occurs between Ru(bpy)3+ 

and O2 to give Ru(bpy)3
2+ quantitatively23 and presumably 

superoxide ion (eq 5). 

Ru(bpy)3
+ + O 2 - Ru(bpy)3

2+ + O2" (5) 

We have obtained evidence for eq 5 by flash photolysis of an 
acetonitrile solution containing DMA (5.8 X 1O-2 M), O2 (1.4 
X 10-3M),24andRu(bpy)3

2+(l.l X 1(T5 M). Following flash 
photolysis, the absorbance due to a transient (Xmax 470 nm) 
produced during the flash decreased by a process which fol­
lowed second-order, equal concentration kinetics. The differ­
ence spectrum showed that the transient was DMA+ 15 and 
that it was the only spectrally observable intermediate.15,25 No 
evidence for Ru(bpy)3

+ was found on this time scale. 
In the experiment, reactions 1 and 2 (D = DMA) occur 

during the flash, followed by rapid oxidation of Ru(bpy)3
+ by 

O2 (eq 5). The reaction observed by flash photolysis must be 
eq 6 (£(22 ± 2 0C) = 8.5 X 108 M"1 s -1). 

O2- + DMA+ — O2 + DMA (6) 

The observation of second-order, equal concentration kinetics 
for reactions 3 and 6 shows that eq 3, 5, and 6 are stoichio­
metric as written.27 The superoxide ion is an activated form 
of O2

29 and it may be possible to develop photocatalytic 
schemes for carrying out useful chemical reactions based on 
the chemistry of O 2

- or HO2 where the reactions are driven 
by visible light. 
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Room Temperature Generation of Radicals from 
Dimethylaminomalononitrile, Probably via 
Dimethylaminocyanocarbene 

Sir: 

Under basic or thermal conditions, 7e/7-octylaminomalo-
nonitrile decomposes with generation of radicals and of hy­
drogen cyanide; a-elimination of the latter was postulated to 
give initially an aminocyanocarbene intermediate, but /3-
elimination could not be entirely ruled out.1 It is now found that 
both dimethylaminomalononitrile (I)2 and its monodeutero 
analogue decompose at ambient temperature to give the di-
methylaminodicyanomethyl radical (3). The ESR spectrum 
of a neat degassed sample—taken 4 h after reaching room 
temperature—and its computer simulation are shown (Figure 
1). Generation of the radical 3 in dilute solution requires prior 
heating to 140 0C for 30 min but is also achieved in the cold 
by UV irradiation (30 s) of a 5% solution of 1 in benzene/di-
tert-buty\ peroxide (95:5). 

In the decomposition of 1, hydrogen cyanide and the di-
methylaminocyanomethyl radical (4) are also produced. The 
formation of hydrogen cyanide is shown by mass spectroscopy 
and by the isolation of l-dimethylamino-2-aminomaleonitrile3 

(7) from the thermolysis (60 0C) product of 1. Compound 7 
results from addition of hydrogen cyanide to 1 (reaction 
h).3 

Direct evidence for the generation of the less stable (see 
below) radical 4 is lacking since it is not detected by ESR 
spectroscopy; however, its generation is inferred from the 
isolation of dimethylglycinonitrile (5) from the thermolysis 
(60 0C) product of 1. Compound 5 results from hydrogen 
abstraction by 4 according to reaction f,3 which additionally 
leads to the accumulation of radical 3. 

Generation of the radicals 3 and 4 and of hydrogen cyanide 
also accounts for the formation of the crystalline thermolysis 
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Figure 1. (A) ESR spectrum of dimethylamino-dicyanomethyi radical 
(3). Conditions, neat dimethylaminomalononitrile (1) 4 h at room tem­
perature. (B) Computer simulation, a values: 6 H [N(CW3):] 9.19,° 8.61 ;* 
1 N[TV(CHj)2] 10.25," 9.61;* 2 N (C=TV) 1.99,° 2.04;* g = 2.0030. 
("Neat 1, line width 0.3 G. *5% 1 in xylene, line width 0.1 G, spectrum 
(not shown3) obtained at room temperature, after 30 min at 140 0C.) 
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product, 1 -amino-2,3-bis(dimethylamino)-1,3-dicyanopropene 
(6), isolated in 19% yield. The initial step in its formation is 
dimerization of 3 (reaction g).3 

Generation of the radicals 3 and 4 from 1 under such mild 
conditions defies conventional explanations. Breaking of 
C-CN bonds invariably requires a large energy expenditure 
(144 kcal in (CN)2, 121 kcal in CH3CN).4 Therefore, only 
concerted processes appear feasible, in which the energy of 
formation of the HCN bond (129 kcal4) combined with the 
stabilization energies of the product species can in part offset 
the breaking of the C-H and C-CN bonds. 

Charge-separated forms contribute to stabilization of the 
radicals 3 and 4 (merostabilization5), 4 being expected to be 
much less persistent than 3 because it is less sterically hindered 
and has only a single nitrile group.6 

The hyperfine splitting constant for the aminonitrogen in 
radical 3 is almost twice that for the a-diethylaminoethyl 
radical Ca(N) CH3CHN(CH2CH3)2 = 5.2)7a and represents 
more than half of the value for the dimethylaminium radical 
(a (N) H+N(CH3)2 = 19.28).7b This confirms that the lone 
electron is appreciably delocalized and hence 3 can be seen as 
a carbon analogue of the nitroxides, having a similar principal 
resonance form, i.e., (CH3)2N+-C(CN)2 vs. (CH3)2N+Cr. 
The stability of 3 is therefore an additional example of the 
analogy between O and C(CN)2, which was recently pointed 
out by Wallenfels et al.8 

The observed solvent effect (see legend under figure) is 
consistent with the expected greater contribution of charge-
separated forms in a more polar medium. 

Two concerted processes are conceivable: 1. Initial distortion 
of the M e 2 N - C - C = N moiety to a near linear array, fol­
lowed by a-elimination of hydrogen cyanide in a symmetry 
allowed a2s + <r2a nonlinear cheletropic fragmentation3,9 to give 
the linear10 dimethylaminocyanocarbene (2, reaction a). The 
carbene, 2, subsequently abstracts a hydrogen atom from 1 
(reaction b) to give the two radicals 3 and 4. 2. Two molecules 
of 1 generate the radicals 3 and 4 and a molecule of isohydro-
cyanic acid, which rearranges to hydrogen cyanide (reactions 
c and d). Route 1 is preferred for several reasons: 

Reactions a + b (route 1) and c + d (route 2) give the same 
products (reaction e) so that as a route to the radicals 3 and 4, 
a + b is energetically favored over c by AH (reaction e) = 9.8 
kcal." 

Although route 2 avoids the intermediacy of the carbene 2, 
precedence does not favor it; bimolecular generation of radicals 
from saturated substrates—as in reaction c—is virtually un­
known.12 

Additionally, the activation energy for reaction a is likely 
to be moderate or even low because aminocyanocarbenes— 
while fairly energetic species10—are expected to be uniquely 
stabilized relative to carbenes with only amino or cyano sub-
stituents. The electron—withdrawing and supplying substit-
uents on the carbene carbon atom—as in 2, allows stabilization 
by ylide-like, charge-separated forms10 regardless of the 
multiplicity. 

The absence of bisdimethylaminofumaro- or maleonitrile3-13 

among the thermolysis products of 1 indicates that simple di­
merization of the carbene 2 does not occur. This is probably 
due to Coulombic repulsion resulting from high electron 
density at the carbene carbon atom.3,10 However, polymer­
ization of 2 via the (CH 3 ) 2 +N=C=C=N- form14 or the 
corresponding diradical10 may account for a large amount of 
polymeric dark-colored thermolysis product. 

Arninocyanocarbene has been suggested as a possible in­
termediate in the prebiotic synthesis of polypeptides and pur­
ines.14 Its direct formation by rearrangement of iminoaceto-
nitrile—the hydrogen cyanide dimer—is improbable;15 it may, 
however, originate from thermolysis of aminomalonitrile—the 
hydrogen cyanide trimer. 
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Cysteine Modification and Cleavage of Proteins 
with 2-Methyl-Arl-benzenesulfonyl-
W-bromoacetylquinonediimide 

Sir: 

The determination of protein sequence has been greatly 
facilitated by cleavage techniques which cause fragmentation 
of the macromolecular peptide chain in a specific manner.1'2 

The use of peptidases for this purpose has been supplemented 
in recent years by a number of chemical cleavage tech­
niques.3-5 Nevertheless, the majority of chemical methods 
proposed for this purpose (based on studies of model sub­
strates) have not been applied successfully to proteins. We wish 
to report the design and development of a new, cysteine-se-
lective modification and cleavage agent, 2-methyl-7V1-ben-
zenesulfonyl-iV4-bromoacetylquinonediimide (I),6 which has 
been observed to cause fragmentation of both ovalbumin and 
reduced bovine pancreatic ribonuclease,7 as well as model 
substrates. 

Incubation of these proteins in 0.1 N acetic acid solution 
containing 0.5% SDS and 0.001 M EDTA (ovalbumin 4.5 X 
10~5 M; ribonuclease 6.7 X 10 -5 M) with an excess of 1 (as 
a 0.08 M solution in acetone) at room temperature for 12 h 
followed by heating at 80 0C for 1 h resulted in chain cleavage, 
which was detected by SDS gel electrophoresis8 (see Figure 
1). In each case, although under these particular conditions 
some uncleaved protein is observed,8 a number of lower mo­
lecular weight protein fragments are produced upon such 
treatment. This fragmentation is proposed to occur via the 
route illustrated in Scheme I. 

Initial 1,4-addition of the cysteine sulfhydryl function is 
directed "para" relative to the 2-methyl substituent, to form 

Figure 1. Superimposed densitometer tracings of polyarcylamide gels from 
SDS disk gel electrophoresis (1% mercaptoethanol; stained with coomassie 
blue and scanned at 550 nm). Gels scanned left to right—high to low 
molecular weight. Trace of standard reaction mixture with protein each 
treated in 0.1 M acetic acid 0.5% SDS, 0.001% EDTA, 12 h, r.t. 1 h, 80 
0C without quinonediimide 1 (• • •) and with quinonediimide (—): top, 
partially reduced bovine pancreatic ribonuclease (Worthington); bottom, 
ovalbumin. The profile of ovalbumin is unchanged if the reaction is not 
heated after treatment with quinonediimide. 

0 6 0 120 2 4 0 

nmoles REAGENT ADDED 
Figure 2. Loss of sulfhydryl of ^-acetylcysteine (6.2 X 10 -5 M) (—) and 
ovalbumin (1.25 X 10"5M) (- - -) in 4.OmL of 0.1 M phosphate buffer, 
pH 8, containing 0.5% SDS and 0.001 M (EDTA) after 2 min reaction 
time with 2-methyl-A"-benzenesulfonyl-7V'-4-bromoacetylquinonediimide, 
1 (D), or with 2-methyl-A"-benzenesulfonyl-iY-4-acetylquinonediimide, 
la (Br = H) (O), or with reduced reagent 2-methyl-4-bromoacetamido-
benzenesulfonanidide (A). Sulfhydryl was determined by incubation with 
Ellman's reagent (DTNB) and recording absorbance at 420 nm after 20 
min. 

an aromatic thioether (2).9'10 This primary regiospecific al­
leviation (easily observed and monitored by UV at 305 nm) 
permits subsequent alkylation of the sulfur atom by the adja­
cent bromoacetamido function to generate a labile sulfonium 
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